PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Localization of light in disordered dielectrics: An approach based on spectral statistics

Markus Saltzer and Hans A. Weidenntier
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We study numerically the fluctuation properties of the eigenvalues of the scalar wave equation in two
dimensions for strong disorder. This equation mimicks properties of light in dielectrics. With increasing
disorder, we find a transition from diffusive to localized behavior, in complete analogy to the case of
Schralinger waveselectrons. At low frequencies, we observe a suppression of disorder. This effect is caused
by the wave number dependence of the disorder term in the wave equation, and has no analog in the case of
electrons.

PACS numbses): 42.25.Dd, 05.60-k, 78.20.Bh

[. INTRODUCTION AND MOTIVATION of the case of strong disorder. Indeed, there is no adequate
theoretical framework which would cover this case, and one
During the last decade, the propagation of waves throughas to resort to numerical simulation. This is what we do in
disordered media has been studied intensely. Surprisindpis paper. Rather than studying a transport property, we in-
similarities between the transport of electrofe., Schie  vestigate the spectral fluctuation properties of classical
dinger wavesin disordered solids and that of light waves in waves(light) in a strongly disordered dielectric. In order to
random dielectrics have been revealed. Examples are univeiest the influence of disorder and to define the transition to
sal conductance fluctuations and weak localization for eleclocalization, we apply the usual measuft® nearest neigh-
trons[1] versus long-range correlations in speckle patterndor spacing distribution and th&; statistio to the eigen-
[2] and coherent backscattering for ligf8], respectively; value distribution. A comparison with the case of electrons
see also Refl4]. Recently, direct experimental evidence for serves as a test for the equivalence between electrons and
the analog of Anderson localization of electrons in disor-classical waves in this regime.
dered solidg45] was reported for lighf6,7]. The propagation of light in a disordered medium is de-
These experimental results go along with a growing thescribed by the scalar wave equation
oretical understanding of the similarities and differences be-
tween the two classes c_)f phenomena. Early work applied the [ —A+8e(N)k2] ®=eok? d. 1)
diagrammatic perturbation theory successfully developed for
electrons to the calculation of properties of speckle pattern . .
which were shown to be analggspof the uni\eersal cr:)onduclaer(':'lf:“’/C s the wave numbfr. .The space deper.1dent di-
tance fluctuations. Later, Efetov’s nonlinear supersymmetri€le€ctric constante(r)=e,— de(r) is decomposed into a
o model[8] emerged as the generic model for equilibrium SPace independent background tesgrand a fluctuating part

and transport phenomena in disordered media. This modeie(F). As a response variable, the dielectric conste(nft)
was originally developed for noninteracting electrons in dis-has to be positive. Thereforése(r)|<e,. The fluctuating

.ordere.((jj SOI'dT‘.' Lt Epphes in the I'ml'tﬂOf wegk dlso(rjder. Herepart de(r) is assumed to be a random process with vanishing
it provides a link between spectral fluctuation and transpork, moment, and a second moment given by

properties, and between random-matrix the@RMT) and
localization theory. The Thouless energy which limits the A
range of validity of RMT appears naturally in the model. - - AT . -

Moreover, the model allows for the calculation of non- (Oe(ry)de(rz))= 1 g7 O(ra=ra). @
perturbative results; see RgP]. Recently, the model was 0
extended to the case of transport of classical walight)
through a disordered mediuf0-12. It was shown that the

effective Lagrangians governing electrons in disordered so d'bel i th | th
ids and classical waves in a disordered medium are identicat4SS€d DeEIowW. Comparing the scalar wave equationvit

and that only the source terms differ. This was somewhag?e Sc;:hrdinger_e‘(juation for ?]n ?Iectrcl)n with ene(rjayn ab
surprising because Scltinger waves and classical waves dISOrder potential/, we note the formal correspondence be-
possess different Ward identitig4]. tweenegk? and the energy, and betweere(r)k? and the

While we do possess a generic theoretical model and BotentialV. Differences between the two wave equations are
fairly comprehensive understanding of the associated phelue to two facts(i) Sinceeok? is always positive whilé is
nomena in the weak disorder limit, the same cannot be saifiot, there is no analog of bound states of the Stimger

equation for light.(ii)) More importantly, the random term
Se(r)k? in Eq. (1) is proportional tok? while V is indepen-
*Present address: Fakitltdlir Physik, Universita Freiburg,  dent of energy. This second difference has far-reaching con-
Hermann-Herder-Strasse 3, 79104 Freiburg, Germany. sequencefl3,1q.

Herel is the elastic mean free patthjs the dimension of the
isystem, and, is a suitably chosen wave number to be dis-
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Equation(2) is written [11] in complete analogy to the 6 :
case of electrons where a formally identical relation holds, %

and wherek, is given by the Fermi energy. This equation 5 :
guarantees that in the weak-coupling case andfok,, the
parameter controlling the exponential decay of the average E0 4

Green function is indeetl Thus Eq.(2) serves as the link _—
betweenl and the variance of the impurity scattering poten- m
tial. However, Eq(2) obviously does not imply an additional 3 E

and unphysical energy dependencedef This is why kg : \
\ ;

must be held fixed, and must not be identified with the actual 5 S TS TS

wave numbek. 010 0.12 014 0.16 0.18 0.20
Two views may be held regarding the relevance of 2y. k

in the case of light scatteringi) One may considebe the

primary physical quantity antla derived one. In this case,

one would keep the variance @, i.e., the value of the =1,2,..., for alattice of sizeL =10 with 100 sampling points per

d+1 ; : ;
constantko "~ in Eq. (2), fixed over the entire range of fre- eigenvalue. The curveyk? is plotted as a thick solid line. The

quencies studied in the numerical simulation. By adopting gints of intersection o0&k with the E,(k)'s give the solutions of
set of values ok, in this frequency range, one would then gq (3).

find a corresponding set bfvalues, one for each value kf
and the associated frequency interval. If, on the contrary, H(K) | D)= eok? | D), (3)
I is the primary physical quantity anik the derived one, one
would keepl fixed. Then, Eq.(2) would apply in a suffi- with an energy dependent Hamiltonian written in Dirac no-
ciently small interval of wave numbers centeredignand  tation as
one would have to readjust the variancesefas one sweeps
over a large frequency interval. _ 25 NI /i

In the case of electrons, the condition for strong disorder H(k) EI (k%S¢ +2d) [i)(i] OZD i)l (4
readskl~1. For light, strong disorder effects like Anderson
localization are similarly expected to occur whenever theThe statesi) belong to the sites of @dimensional lattice of
transport mean free path is of the order of the wavelengthength Ly. The sum(i,j) is taken over nearest neighbors
This suggests that the quantity of primary interest for local-only. The wave numbek and all other length-dependent
ization is the elastic mean free pdthather than the variance quantities are written in units of the lattice constanwhere
of the disorder termde. We organize our numerical calcula- a is set equal to unity so th&t=ka andl=1/a with a=1.
tions accordingly. We restrict ourselves td=2 and choose periodic boundary

Confining ourselves to two dimensions, we will show thatconditions. The independent random variablés; are
with increasing disorder our model exhibits a transition fromequally distributed in the intervgl—W/2,W/2]. On account
extended to localized states, in qualitative agreement witlpf Eq. (2) we obtainw/zz,/lzﬁnkg_ The important differ-
the case of electrons. A significant difference is due to thence between Ed4) and the standard tight-binding Hamil-
explicit k? dependence of the disorder term: With inCI’eaSingtonian lies in the dependence of the random term on the
wavelengthh = 2#/k, disorder becomes more and more sup-wave numbek? (this dependence causes an “energy depen-
pressed. Thus the conditiarr=I is, for small values ok, N0 dence” of the “disorder potential” which is absent in the
longer a sufficient condition for localization. case of electrons

It has been known for some time that in one-dimensional The restriction tod=2 is necessary to simplify the nu-
systems, the localization length for a wave equation with anerical effort. However, it has one unphysical consequence.
random index of refraction diverges at the boundes0 of ~ The scaling of the random variable introduced in E2).
the spectrum. This fact is related to the stability of thedepends on dimension and implies that, det 2, the quan-
boundary with respect to impurity concentratifi]. The tity ((5ek2)?) is proportional t, while in d=3 it would be
divergence was obtained directly in R¢L5], and can also  jndependent ok,. Put differently, the map< se depends

be deduced from corresponding results for electrons using gn dimensiond. This fact has to be kept in mind when we
duality relation connecting low energy behavior of the wavegiscuss our results.

FIG. 1. Interpolating curves vs wave numbefin units of the
lattice constanta) for a sequence of eigenvalues,(k), n

equation and high energy behavior of the Scimger equa- We solve Eq.(3) by first calculating the eigenvalues
tion [_16]. In this sense, the results present_ed beloyv exten@n(kr) for Hamiltonian(4) for a set of fixed wave numbers
existing knowledge but do not come as a big surprise. 1’ "and for a fixed realization of the random variabls .

The paper is organized as follows. In Sec. Il we introdu_ce,:Or each integen we interpolateE, (k') plotted over the
the numerical model. The results of the spectral fluctuatlorg’,cm]p"ng pointsk’ along thek axis to obtain a numerical
analysis are presented in Sec. lll, where we also compare oy tion E, (k). The conditione,k?=E, (k) leads directly to
results to the case of electrons. Our conclusions are drawn i graphical solutionk? of Eq. (3). This procedure is dem-

: .(3).

Sec. V. onstrated in Fig. 1. Because of the occurrence of avoided

crossings in thd,(k), we pay special attention to the sam-

pling resolution along th& axis. The choice of too few sam-
Discretization of Eq(1) leads to an eigenvalue equation pling pointsk” will smear out the curveg,(k) and, there-

of the form fore, will distort the results. On the other hand, improving

Il. MODEL
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the resolution affects the number of diagonalizations to bevalues,” specified in terms of the wave numbers
carried out and, hence, the computing time. The problem i&, ,k,, ... ky. We recall that the cumulative spectral func-
compounded by the need to average over a sufficient numbéon or staircase function,
of realizations of the set of random variablg®s . Typically, N
we have generated 250 realizations of the ensemble. Thus ke ,

the need to attain high numerical resolution restricts us to ”(k):f_wdk n; ok —kn>:n§1 O(k=kn), (6
small system sizes. The systems under study in this paper are

mostly of size 2 20. counts the number of levels with wave numbek. This

In the following we present two series of data sets. In bothy . ~tion is decomposed into an average pagi(k) and a
cases, the variance @k is fixed by choosind andk,, and fluctuating part7q,d(K):

is given by

N

4o 7(K) = 72 K) + 703c(K). )
<56i5€j>:W5ij . (5) ) X
ko The spectrum is unfolded by mapping the sequence
ki, ... ky Onto the sequencg, ..., ¢y, with
First we approach the condition~I| at a fixed wavelength
Ao (we choose the wave numbkg=1.064) by decreasing En=nalKn). (8)
the elastic mean free pathwith |=5, 3, and 1.4098. The
disorder parameters are thieg =5.32, 3.192, and 1.5. Inthe |n the unfolded spectrum the mean level density is unity.
second series, we compare waves of different energies by we have determined the average staircase funajigfk)
decreasing the wave numbled’ but keepingl fixed. Begin— by averaging over the ensemble of Sequerk;ﬁs_ . 1kN
ning with the last configurationl &1.4098 andk,=1.5) of  generated in the calculatidi7]. To this end, we have di-
the first series, we proceed wiky=0.9 and 0.8. The disor- vided the relevant range of wave numbers iMobins la-
der parameter is then reduced furthlegl =1.5, 1.269, and peledi=1,... M with common widthsAk. In each bin
1.128. In both cases, our results are meaningfukfealues i (i=1,... M), we calculated the average level dengity
in the vicinity of k. as an average over the ensemble of sequences generated in
In reducing the disorder parametgji, we must increase the calculation. The average part of the cumulative spectral
the dielectric constard,. This is because small valueslgf function is then obtained by a summation over bins,
imply large values obe;, cf. Eq.(5), which in turn through
the condition |d¢;|<e, affects the minimum acceptaple ]
value ofe,. There are two reasonable choices for the dielec- Nad ) =_2 Pi s 9
tric constant which are consistent with this requireméit. =1
€o is held fixed for a series of calculations, @r) € is ) ) ) )
defined dynamically as the maximum value of #e's oc- wherex is 'Fhek valug corr.espondln.g to the right-hand side
curring in the simulation. In the first case one is automati-0order of bin numbej. An interpolation between the val-
cally restricted to values of the parametessidk, which lie  ues then givesy, (k) for all k. _ _
above certain bounds given by the condit|diz;| < e,. This . The fluctgat|or_1 measures displayed in the following sec-
does not happen in the second case, where the fluctuations #ns have likewise been calculated as ensemble averages.
the total dielectric constant lie in the intenal,2e,]. Actu- For the case of _the nearest-m_elghbor spacing distribution, this
ally, the two cases are not very different, and have qualita’vas done at a fixed value &fgiven byk,. In the case of the
tively the same effect. This is seen by applying the transforfWo-point correlation function, a neighborhood kj was

mation s=/eor to Eq. (1). We found it simpler to use the used.
dynamical determination ok,, leading to the values,
=2.502, 3.32, and 4.712 for the sequerice5, 3, and B. Nearest neighbor spacing distribution
14098, respectively, al’d)=4712, 6075, and 7.227 for the The nearest neighbor Spacing d|str|butm) is the ob-
sequence,=1.064, 0.9, and 0.8, respectively. servable most commonly used to study short-range fluctua-
tions in a spectrum. It is the probability density of finding a
Il. DATA ANALYSIS distances between adjacent levels on the unfolded scale. For

the Gaussain orthogonal ensemble of random matrices

In Sec. lll A we describe the unfolding of the spectra, and( : . .
. ) . GOE, the relevant ensemble in our cad#’igner surmised
in Secs. llIB and in 1lIC we show the nearest nelghborfor n(s) the shape

spacing distribution and the spectral two-point correlation
function, respectively. The latter allows us to identify the T T
Thouless energy and, thus, the domain of validity of RMT. p(s)= Esexr{ - ZSZ)’ (10
The results are discussed in Sec. Il D.

) which is very close to the exact result. In the case of com-
A. Unfolding pletely uncorrelated levels(s) is given by the Poisson dis-
The unfolding procedure removes the influence of a nontribution
constant mean level density on the spectral fluctuation prop-
erties. Our calculations yield an ordered sequence of “eigen- p(s)=exp(—s). (11
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FIG. 2. Nearest neighbor spacing distributjpfs) for the series FIG. 3. Nearest neighbor spacing distributjps) for the series
of data sets with=5, 3, and 1.4098 &t,=1.064. The solid lines of data sets wittkky=1.5, 0.9, and 0.8 dt=1.4098. The solid lines
are GOE and Poisson predictions, respectively. are Poisson and GOE predictions, respectively.kger0.9 the data

are fitted with the Brody distribution; see the text.

Both the GOE and the Poisson distribution are shown as
solid lines in Fig. 2(upper and middle panel: GOE; lower (Poisson spectrum we hav&?(L)=L and for the GOE,
panel: Poisson 32(L)~log(L). The average in Eq(13) is taken over the

Figure 2 shows our numerical results for the first series oensemble at fixed energ, . The spectral rigidity is given
data sets. We recall that we consider three different disordegy
parameter&,l =5.32, 3.192, and 1.5 at a fixed wave number
ko=1.064, corresponding to mean free path value$, 3, 1 &, tL )
and 1.4098. The nearest neighbor spacing distribution exhib- ~ Aa(L)= EmmA,Bj dé[n(§) —AE—B]7). (14
its a transition from GOE behavior for the largest mean free o

path, i.e., relatively weak disorder, to a Poisson distributionThe average is again taken over the ensemble. The function

for the smallest mean free path, i.e., strong disorder. W?Ph?(l‘) can be expressed as an intearal over the number vari-
recall that in the second data set, we leave the mean free pa P 9

ance and is, therefore, smoother tH&f(L).

The results for the two series of data sets are shown in
Figs. 4 and 5. In both cases, the numerical data agree with
Nhe GOE prediction up to a certain point and then tend to
deviate from it linearly. This allows us to determine the
Thouless energy approximately as the point of departure

| fixed atl =1.4098 and vary the wave numbey=1.5, 0.9,
and 0.8, so thakgl=1.5, 1.269, and 1.128. The data are
shown in Fig. 3. We observe a transition from the Poisso
distribution to GOE statistics. The data set wii}= 0.9 has
been fitted with the “Brody distribution’[18]

. gi+1 from GOE behavior. Starting with a disorder paramédgr
Py(S)=Cqs? ex;{ - ) (12) =5.32 atl=5 in Fig. 4, we observe that with decreasing
q+1 mean free path, the Thouless energy shrinks all the way

_ g+l . down to a value close to the mean level spacing. lkgbr
with ¢cq=[I"""*(1/(q+1))]/(q+1) and 0<qg<1. This _15 je |=1.4098, we do noteven find any GOE behavior
gives q~0.55 for the mixture between the Wigner surmisein the level number variance anymore. The correlations are
and the Poisson distributidithe solid curve in the middle of very close to Poisson-type behavior. Figure 5 shows a
Fig. 3). Poisson-like distribution at valudgl=1.5 andk,=1.064.

Keeping the mean free patHixed and decreasing the wave
C. Two-point spectral correlations numberk, we observe a transition back to GOE-type statis-

Correlations between pairs of spacings are studied witﬁics' In order to give a better illustration of the transition, we
the help of the number varian&?(L) and the spectral ri- /S0 show the correlation functions fleg=0.5.
gidity A5(L). We recall the definitiong19]. The number _ _
variance is given by D. Discussion
Before discussing our results we recall some pertinent
200 Y /11 2
AL =([L n(L’gko)] )- (13 facts about level statistics of noninteracting electrons in dis-
) . ordered mesoscopic solif8]. We consider a situation where
Heren(L,& ) counts the number of levels in the interval the sizel, of the system is large compared to the elastic
[§k0,§k0+ L] on the unfolded scale. For an uncorrelatedmean free path. The diffusive regime I(,<¢) and the lo-
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FIG. 4. Level number varianc&?(L) and spectral rigidity FIG. 5. Level number varianc&?(L) and spectral rigidity
A4(L) for 1=5, 3, and 1.4098 a&,=1.064. The GOE and Poisson A,(L) for k,=1.5, 0.9, and 0.8, and 0.5 lat 1.4098. The GOE and
predictions are plotted as solid and dashed lines, respectively.  Poisson predictions are plotted as solid and dashed lines, respec-

. . L . . tively.
calized regime I( ;> &) are distinguished by comparing the
lengthL, with the localization lengtt. In the diffusive re-  pojsson distribution to GOE-like behavior. At first sight, this
gime, the states are eXtended, and the level statistics fO”OV\f'@SUn is Surprising because a decreasé((pﬁmounts to a
RMT up to a critical energy, the Thouless enefy[20,21.  decrease of the disorder parameter. We attribute this result to
Beyond this scale, the two-point spectral correlation functionhe fact mentioned in Sec. Il: Fod=2, the quantity

follows a power law, i.e., grows-Ld_’Z. The Thouless energy ((s5¢k2)2) is proportional toko, and, thus, diminishes as we

also defines the transition to localization: This transition OCyeducek,. The transition from localized back to extended

curs whenk as a function of some system parameter deates suggested by the data therefore reflects a transition

creases and becomes of the order of the mean single-partiigym a strongly disordered to a more weakly disordered scat-

level spacing. _ _ tering medium. This transition clearly occurs in the scalar
We turn to the first series of data sets shown in Secs. lll By 5ye equation only and has no analog for Sdimger

and Ill C, i.e., to the sequence whékgis held fixed andis  \yaves. For the reasons discussed in Sec. I, it is possible that

decreased. The nearest neighbor spacing distribution displayige effect is much stronger far=2 than it is ford=3. But

a transition from a GOE-type distribution to a Poissonianye expect a similar behavior there, too, at sufficiently small

one. The two-point correlation functions give a more differ-,y4ye numbers, caused by tké dependence of the disorder
entiated picture. Fdr=5 we do find GOE behavior for small igrm.

values ofL, and an approximately linear growth for large
values ofL. This linear growth is in perfect agreement with
the case of electronsve recalld=2). The Thouless energy
marking the transition between both regimes is seen to de-
crease with decreasidgFor| =3 the two—point correlation We have numerically studied scalar waves in a disordered
functions already signal a transition to a Poisson-like, statismedium in two dimensions. By investigating the spectral
tic while the nearest neighbor spacing distribution still showsfluctuations, we have shown that a classical wave of fixed
Wigner-Dyson statistics. At=1.4098 both the two-point wavelength becomes localized for sufficiently strong disor-
correlation functions and the nearest neighbor spacing distrider, in complete analogy to the case of electrons in a disor-
bution are practically Poisson distributed, and indicate localdered medium. The main difference between the wave equa-
ization. Thus enhancement of the disorder by a decrease tibns for classical and Schdinger waves lies in the energy
the mean free path causes a classical wave with fixed wawependence of the disorder potential and emerges when we
number to undergo Anderson localization, in complete analeompare the spectral statistics of classical waves of different
ogy to the case of electrons. wavelengths in the limit of long wavelength. In our two-
The second series of data sets probes the dependencedifnensional system we observe an increasing suppression of
the level statistics on the wave number in two dimensionsdisorder effects at low frequencies. This does not happen for
We find that for a fixed value of the mean free patra  electrons, and relates to the frequency dependence of the
decrease of the wave numbley causes a transition from a scattering cross section which is found for light but not for

IV. SUMMARY AND CONCLUSION
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electrons. The fact that the calculations were done in twavave equation? We cannot answer this question in full: Our
dimensions may overemphasize the effect but the same kirgimulation is necessarily limited to a finite two-dimensional
of phenomenon is expected to occur in three dimensions onarea. We have shown that the boundary of the spectrum at
somewhat reduced scale. k=0 has a profound impact on the localization length. How-

One-parameter scaling has been used to show that in twever, we cannot exclude the possibility that the localization
dimensions, electrons are localized for any disof@@t. Do  length becomes very large at the boundary without actually
our results imply that this statement does not hold for thediverging.
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