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Localization of light in disordered dielectrics: An approach based on spectral statistics

Markus Saltzer* and Hans A. Weidenmu¨ller
Max-Planck-Institut fu¨r Kernphysik, Postfach 103980, 69029 Heidelberg, Germany

~Received 22 October 1999!

We study numerically the fluctuation properties of the eigenvalues of the scalar wave equation in two
dimensions for strong disorder. This equation mimicks properties of light in dielectrics. With increasing
disorder, we find a transition from diffusive to localized behavior, in complete analogy to the case of
Schrödinger waves~electrons!. At low frequencies, we observe a suppression of disorder. This effect is caused
by the wave number dependence of the disorder term in the wave equation, and has no analog in the case of
electrons.

PACS number~s!: 42.25.Dd, 05.60.2k, 78.20.Bh
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I. INTRODUCTION AND MOTIVATION

During the last decade, the propagation of waves thro
disordered media has been studied intensely. Surpri
similarities between the transport of electrons~i.e., Schro¨-
dinger waves! in disordered solids and that of light waves
random dielectrics have been revealed. Examples are un
sal conductance fluctuations and weak localization for e
trons @1# versus long-range correlations in speckle patte
@2# and coherent backscattering for light@3#, respectively;
see also Ref.@4#. Recently, direct experimental evidence f
the analog of Anderson localization of electrons in dis
dered solids@5# was reported for light@6,7#.

These experimental results go along with a growing t
oretical understanding of the similarities and differences
tween the two classes of phenomena. Early work applied
diagrammatic perturbation theory successfully developed
electrons to the calculation of properties of speckle patte
which were shown to be analogs of the universal cond
tance fluctuations. Later, Efetov’s nonlinear supersymme
s model @8# emerged as the generic model for equilibriu
and transport phenomena in disordered media. This m
was originally developed for noninteracting electrons in d
ordered solids. It applies in the limit of weak disorder. He
it provides a link between spectral fluctuation and transp
properties, and between random-matrix theory~RMT! and
localization theory. The Thouless energy which limits t
range of validity of RMT appears naturally in the mode
Moreover, the model allows for the calculation of no
perturbative results; see Ref.@9#. Recently, the model wa
extended to the case of transport of classical waves~light!
through a disordered medium@10–12#. It was shown that the
effective Lagrangians governing electrons in disordered
ids and classical waves in a disordered medium are ident
and that only the source terms differ. This was somew
surprising because Schro¨dinger waves and classical wave
possess different Ward identities@4#.

While we do possess a generic theoretical model an
fairly comprehensive understanding of the associated p
nomena in the weak disorder limit, the same cannot be
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of the case of strong disorder. Indeed, there is no adeq
theoretical framework which would cover this case, and o
has to resort to numerical simulation. This is what we do
this paper. Rather than studying a transport property, we
vestigate the spectral fluctuation properties of class
waves~light! in a strongly disordered dielectric. In order t
test the influence of disorder and to define the transition
localization, we apply the usual measures~the nearest neigh
bor spacing distribution and theD3 statistic! to the eigen-
value distribution. A comparison with the case of electro
serves as a test for the equivalence between electrons
classical waves in this regime.

The propagation of light in a disordered medium is d
scribed by the scalar wave equation

@ 2D1de~rW !k2 # F5e0k2 F. ~1!

Here k5v/c is the wave number. The space dependent
electric constante(rW)5e02de(rW) is decomposed into a
space independent background terme0 and a fluctuating part
de(rW). As a response variable, the dielectric constante(rW)
has to be positive. Therefore,ude(rW)u,e0. The fluctuating
partde(rW) is assumed to be a random process with vanish
first moment, and a second moment given by

^de~rW1!de~rW2!&5
4p

lk0
d11

d~rW12rW2!. ~2!

Herel is the elastic mean free path,d is the dimension of the
system, andk0 is a suitably chosen wave number to be d
cussed below. Comparing the scalar wave equation~1! with
the Schro¨dinger equation for an electron with energyE in a
disorder potentialV, we note the formal correspondence b
tweene0k2 and the energyE, and betweende(rW)k2 and the
potentialV. Differences between the two wave equations
due to two facts:~i! Sincee0k2 is always positive whileE is
not, there is no analog of bound states of the Schro¨dinger
equation for light.~ii ! More importantly, the random term
de(rW)k2 in Eq. ~1! is proportional tok2 while V is indepen-
dent of energy. This second difference has far-reaching c
sequences@13,10#.
5918 ©2000 The American Physical Society
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PRE 61 5919LOCALIZATION OF LIGHT IN DISORDERED . . .
Equation~2! is written @11# in complete analogy to the
case of electrons where a formally identical relation hol
and wherek0 is given by the Fermi energy. This equatio
guarantees that in the weak-coupling case and fork5k0, the
parameter controlling the exponential decay of the aver
Green function is indeedl. Thus Eq.~2! serves as the link
betweenl and the variance of the impurity scattering pote
tial. However, Eq.~2! obviously does not imply an additiona
and unphysical energy dependence ofde. This is why k0
must be held fixed, and must not be identified with the act
wave numberk.

Two views may be held regarding the relevance of Eq.~2!
in the case of light scattering.~i! One may considerde the
primary physical quantity andl a derived one. In this case
one would keep the variance ofde, i.e., the value of the
constantlk0

d11 in Eq. ~2!, fixed over the entire range of fre
quencies studied in the numerical simulation. By adoptin
set of values ofk0 in this frequency range, one would the
find a corresponding set ofl values, one for each value ofk0
and the associated frequency interval.~ii ! If, on the contrary,
l is the primary physical quantity andde the derived one, one
would keepl fixed. Then, Eq.~2! would apply in a suffi-
ciently small interval of wave numbers centered onk0, and
one would have to readjust the variance ofde as one sweeps
over a large frequency interval.

In the case of electrons, the condition for strong disor
readskl'1. For light, strong disorder effects like Anderso
localization are similarly expected to occur whenever
transport mean free path is of the order of the wavelen
This suggests that the quantity of primary interest for loc
ization is the elastic mean free pathl rather than the varianc
of the disorder termde. We organize our numerical calcula
tions accordingly.

Confining ourselves to two dimensions, we will show th
with increasing disorder our model exhibits a transition fro
extended to localized states, in qualitative agreement w
the case of electrons. A significant difference is due to
explicit k2 dependence of the disorder term: With increas
wavelengthl52p/k, disorder becomes more and more su
pressed. Thus the conditionl' l is, for small values ofk, no
longer a sufficient condition for localization.

It has been known for some time that in one-dimensio
systems, the localization length for a wave equation wit
random index of refraction diverges at the boundaryk50 of
the spectrum. This fact is related to the stability of t
boundary with respect to impurity concentration@14#. The
divergence was obtained directly in Ref.@15#, and can also
be deduced from corresponding results for electrons usin
duality relation connecting low energy behavior of the wa
equation and high energy behavior of the Schro¨dinger equa-
tion @16#. In this sense, the results presented below ext
existing knowledge but do not come as a big surprise.

The paper is organized as follows. In Sec. II we introdu
the numerical model. The results of the spectral fluctuat
analysis are presented in Sec. III, where we also compare
results to the case of electrons. Our conclusions are draw
Sec. IV.

II. MODEL

Discretization of Eq.~1! leads to an eigenvalue equatio
of the form
,
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H~k! uF&5e0k2 uF&, ~3!

with an energy dependent Hamiltonian written in Dirac n
tation as

H~k!5(
i

~k2de i12d! u i &^ i u 2 (
^ i , j &

u i &^ j u. ~4!

The statesu i & belong to the sites of ad-dimensional lattice of
length L0. The sum^ i , j & is taken over nearest neighbo
only. The wave numberk and all other length-dependen
quantities are written in units of the lattice constanta, where
a is set equal to unity so thatk5ka and l 5 l /a with a51.
We restrict ourselves tod52 and choose periodic boundar
conditions. The independent random variablesde i are
equally distributed in the interval@2W/2,W/2#. On account
of Eq. ~2! we obtainW/25A12p/ lk0

3. The important differ-
ence between Eq.~4! and the standard tight-binding Hami
tonian lies in the dependence of the random term on
wave numberk2 ~this dependence causes an ‘‘energy dep
dence’’ of the ‘‘disorder potential’’ which is absent in th
case of electrons!.

The restriction tod52 is necessary to simplify the nu
merical effort. However, it has one unphysical consequen
The scaling of the random variable introduced in Eq.~2!
depends on dimension and implies that, ford52, the quan-
tity ^(dek0

2)2& is proportional tok0 while in d53 it would be
independent ofk0. Put differently, the mapl⇔de depends
on dimensiond. This fact has to be kept in mind when w
discuss our results.

We solve Eq.~3! by first calculating the eigenvalue
En(k8) for Hamiltonian~4! for a set of fixed wave number
k8, and for a fixed realization of the random variablesde i .
For each integern we interpolateEn(k8) plotted over the
sampling pointsk8 along thek axis to obtain a numerica
functionEn(k). The conditione0k25En(k) leads directly to
the graphical solutionskn

2 of Eq. ~3!. This procedure is dem
onstrated in Fig. 1. Because of the occurrence of avoi
crossings in theEn(k), we pay special attention to the sam
pling resolution along thek axis. The choice of too few sam
pling pointsk8 will smear out the curvesEn(k) and, there-
fore, will distort the results. On the other hand, improvin

FIG. 1. Interpolating curves vs wave numberk ~in units of the
lattice constanta) for a sequence of eigenvaluesEn(k), n
51,2, . . . , for alattice of sizeL510 with 100 sampling points pe
eigenvalue. The curvee0k2 is plotted as a thick solid line. The
points of intersection ofe0k2 with theEn(k)’s give the solutions of
Eq. ~3!.
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5920 PRE 61MARKUS SALTZER AND HANS A. WEIDENMÜLLER
the resolution affects the number of diagonalizations to
carried out and, hence, the computing time. The problem
compounded by the need to average over a sufficient num
of realizations of the set of random variablesde i . Typically,
we have generated 250 realizations of the ensemble. T
the need to attain high numerical resolution restricts us
small system sizes. The systems under study in this pape
mostly of size 20320.

In the following we present two series of data sets. In b
cases, the variance ofde is fixed by choosingl andk0, and
is given by

^de ide j&5
4p

lk0
d11

d i j . ~5!

First we approach the conditionl' l at a fixed wavelength
l0 ~we choose the wave numberk051.064) by decreasing
the elastic mean free pathl, with l 55, 3, and 1.4098. The
disorder parameters are thenk0l 55.32, 3.192, and 1.5. In th
second series, we compare waves of different energies
decreasing the wave numberk0 but keepingl fixed. Begin-
ning with the last configuration (l 51.4098 andk051.5) of
the first series, we proceed withk050.9 and 0.8. The disor
der parameter is then reduced further,k0l 51.5, 1.269, and
1.128. In both cases, our results are meaningful fork values
in the vicinity of k0.

In reducing the disorder parameterk0l , we must increase
the dielectric constante0. This is because small values ofk0l
imply large values ofde i , cf. Eq. ~5!, which in turn through
the condition ude i u,e0 affects the minimum acceptapl
value ofe0. There are two reasonable choices for the diel
tric constant which are consistent with this requirement.~i!
e0 is held fixed for a series of calculations, or~ii ! e0 is
defined dynamically as the maximum value of thede j ’s oc-
curring in the simulation. In the first case one is automa
cally restricted to values of the parametersl andk0 which lie
above certain bounds given by the conditionude i u,e0. This
does not happen in the second case, where the fluctuatio
the total dielectric constant lie in the interval@0,2e0#. Actu-
ally, the two cases are not very different, and have qua
tively the same effect. This is seen by applying the trans
mation sW5Ae0rW to Eq. ~1!. We found it simpler to use the
dynamical determination ofe0, leading to the valuese0
52.502, 3.32, and 4.712 for the sequencel 55, 3, and
1.4098, respectively, ande054.712, 6.075, and 7.227 for th
sequencek051.064, 0.9, and 0.8, respectively.

III. DATA ANALYSIS

In Sec. III A we describe the unfolding of the spectra, a
in Secs. III B and in III C we show the nearest neighb
spacing distribution and the spectral two-point correlat
function, respectively. The latter allows us to identify t
Thouless energy and, thus, the domain of validity of RM
The results are discussed in Sec. III D.

A. Unfolding

The unfolding procedure removes the influence of a n
constant mean level density on the spectral fluctuation p
erties. Our calculations yield an ordered sequence of ‘‘eig
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values,’’ specified in terms of the wave numbe
k1 ,k2 , . . . ,kN . We recall that the cumulative spectral fun
tion or staircase function,

h~k!5E
2`

k

dk8 (
n51

N

d~k82kn!5 (
n51

N

Q~k2kn!, ~6!

counts the number of levels with wave number<k. This
function is decomposed into an average parthav(k) and a
fluctuating parthfluc(k):

h~k!5hav~k!1hfluc~k!. ~7!

The spectrum is unfolded by mapping the seque
k1 , . . . ,kN onto the sequencej1 , . . . ,jN , with

jn5hav~kn!. ~8!

In the unfolded spectrum the mean level density is unity.
We have determined the average staircase functionhav(k)

by averaging over the ensemble of sequencesk1 , . . . ,kN
generated in the calculation@17#. To this end, we have di-
vided the relevant range of wave numbers intoM bins la-
beled i 51, . . . ,M with common widthsDk. In each bin
i ,(i 51, . . . ,M ), we calculated the average level densityr i
as an average over the ensemble of sequences genera
the calculation. The average part of the cumulative spec
function is then obtained by a summation over bins,

hav~k!5(
i 51

j

r i , ~9!

wherek is thek value corresponding to the right-hand sid
border of bin numberj. An interpolation between thek val-
ues then giveshav(k) for all k.

The fluctuation measures displayed in the following s
tions have likewise been calculated as ensemble avera
For the case of the nearest-neighbor spacing distribution,
was done at a fixed value ofk given byk0. In the case of the
two-point correlation function, a neighborhood ofk0 was
used.

B. Nearest neighbor spacing distribution

The nearest neighbor spacing distributionp(s) is the ob-
servable most commonly used to study short-range fluc
tions in a spectrum. It is the probability density of finding
distances between adjacent levels on the unfolded scale.
the Gaussain orthogonal ensemble of random matr
~GOE, the relevant ensemble in our case!, Wigner surmised
for p(s) the shape

p~s!5
p

2
s expS 2

p

4
s2D , ~10!

which is very close to the exact result. In the case of co
pletely uncorrelated levelsp(s) is given by the Poisson dis
tribution

p~s!5exp~2s!. ~11!
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Both the GOE and the Poisson distribution are shown
solid lines in Fig. 2~upper and middle panel: GOE; lowe
panel: Poisson!.

Figure 2 shows our numerical results for the first series
data sets. We recall that we consider three different diso
parametersk0l 55.32, 3.192, and 1.5 at a fixed wave numb
k051.064, corresponding to mean free path valuesl 55, 3,
and 1.4098. The nearest neighbor spacing distribution ex
its a transition from GOE behavior for the largest mean f
path, i.e., relatively weak disorder, to a Poisson distribut
for the smallest mean free path, i.e., strong disorder.
recall that in the second data set, we leave the mean free
l fixed at l 51.4098 and vary the wave numberk051.5, 0.9,
and 0.8, so thatk0l 51.5, 1.269, and 1.128. The data a
shown in Fig. 3. We observe a transition from the Poiss
distribution to GOE statistics. The data set withk050.9 has
been fitted with the ‘‘Brody distribution’’@18#

pq~s!5cqsq expS 2
cqsq11

q11 D ~12!

with cq5@Gq11
„1/(q11)…#/(q11) and 0<q<1. This

gives q'0.55 for the mixture between the Wigner surmi
and the Poisson distribution~the solid curve in the middle o
Fig. 3!.

C. Two-point spectral correlations

Correlations between pairs of spacings are studied w
the help of the number varianceS2(L) and the spectral ri-
gidity D3(L). We recall the definitions@19#. The number
variance is given by

S2~L !5^@L2n~L,jk0
!#2&. ~13!

Here n(L,jk0
) counts the number of levels in the interv

@jk0
,jk0

1L# on the unfolded scale. For an uncorrelat

FIG. 2. Nearest neighbor spacing distributionp(s) for the series
of data sets withl 55, 3, and 1.4098 atk051.064. The solid lines
are GOE and Poisson predictions, respectively.
s
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~Poisson! spectrum we haveS2(L)5L and for the GOE,
S2(L); log(L). The average in Eq.~13! is taken over the
ensemble at fixed energyjk0

. The spectral rigidity is given
by

D3~L !5K 1

L
minA,BE

jk0

jk0
1L

dj@h~j!2Aj2B#2L . ~14!

The average is again taken over the ensemble. The func
D3(L) can be expressed as an integral over the number v
ance and is, therefore, smoother thanS2(L).

The results for the two series of data sets are shown
Figs. 4 and 5. In both cases, the numerical data agree
the GOE prediction up to a certain point and then tend
deviate from it linearly. This allows us to determine th
Thouless energy approximately as the point of depart
from GOE behavior. Starting with a disorder parameterk0l
55.32 at l 55 in Fig. 4, we observe that with decreasin
mean free pathl, the Thouless energy shrinks all the wa
down to a value close to the mean level spacing. Fork0l
51.5, i.e.,l 51.4098, we do not even find any GOE behav
in the level number variance anymore. The correlations
very close to Poisson-type behavior. Figure 5 shows
Poisson-like distribution at valuesk0l 51.5 andk051.064.
Keeping the mean free pathl fixed and decreasing the wav
numberk0 we observe a transition back to GOE-type stat
tics. In order to give a better illustration of the transition, w
also show the correlation functions fork050.5.

D. Discussion

Before discussing our results we recall some pertin
facts about level statistics of noninteracting electrons in d
ordered mesoscopic solids@9#. We consider a situation wher
the sizeL0 of the system is large compared to the elas
mean free pathl. The diffusive regime (L0!j) and the lo-

FIG. 3. Nearest neighbor spacing distributionp(s) for the series
of data sets withk051.5, 0.9, and 0.8 atl 51.4098. The solid lines
are Poisson and GOE predictions, respectively. Fork050.9 the data
are fitted with the Brody distribution; see the text.
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5922 PRE 61MARKUS SALTZER AND HANS A. WEIDENMÜLLER
calized regime (L0@j) are distinguished by comparing th
lengthL0 with the localization lengthj. In the diffusive re-
gime, the states are extended, and the level statistics fol
RMT up to a critical energy, the Thouless energyEc @20,21#.
Beyond this scale, the two-point spectral correlation funct
follows a power law, i.e., grows;Ld/2. The Thouless energy
also defines the transition to localization: This transition
curs whenEc as a function of some system parameter
creases and becomes of the order of the mean single-pa
level spacing.

We turn to the first series of data sets shown in Secs. I
and III C, i.e., to the sequence wherek0 is held fixed andl is
decreased. The nearest neighbor spacing distribution disp
a transition from a GOE-type distribution to a Poisson
one. The two-point correlation functions give a more diffe
entiated picture. Forl 55 we do find GOE behavior for sma
values ofL, and an approximately linear growth for larg
values ofL. This linear growth is in perfect agreement wi
the case of electrons~we recalld52). The Thouless energ
marking the transition between both regimes is seen to
crease with decreasingl. For l 53 the two–point correlation
functions already signal a transition to a Poisson-like, sta
tic while the nearest neighbor spacing distribution still sho
Wigner-Dyson statistics. Atl 51.4098 both the two-poin
correlation functions and the nearest neighbor spacing di
bution are practically Poisson distributed, and indicate loc
ization. Thus enhancement of the disorder by a decreas
the mean free path causes a classical wave with fixed w
number to undergo Anderson localization, in complete an
ogy to the case of electrons.

The second series of data sets probes the dependen
the level statistics on the wave number in two dimensio
We find that for a fixed value of the mean free pathl, a
decrease of the wave numberk0 causes a transition from

FIG. 4. Level number varianceS2(L) and spectral rigidity
D3(L) for l 55, 3, and 1.4098 atk051.064. The GOE and Poisso
predictions are plotted as solid and dashed lines, respectively.
s
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Poisson distribution to GOE-like behavior. At first sight, th
result is surprising because a decrease ofk0 amounts to a
decrease of the disorder parameter. We attribute this resu
the fact mentioned in Sec. II: Ford52, the quantity
^(dek0

2)2& is proportional tok0, and, thus, diminishes as w
reducek0. The transition from localized back to extende
states suggested by the data therefore reflects a trans
from a strongly disordered to a more weakly disordered s
tering medium. This transition clearly occurs in the sca
wave equation only and has no analog for Schro¨dinger
waves. For the reasons discussed in Sec. II, it is possible
the effect is much stronger ford52 than it is ford53. But
we expect a similar behavior there, too, at sufficiently sm
wave numbers, caused by thek2 dependence of the disorde
term.

IV. SUMMARY AND CONCLUSION

We have numerically studied scalar waves in a disorde
medium in two dimensions. By investigating the spect
fluctuations, we have shown that a classical wave of fix
wavelength becomes localized for sufficiently strong dis
der, in complete analogy to the case of electrons in a dis
dered medium. The main difference between the wave eq
tions for classical and Schro¨dinger waves lies in the energ
dependence of the disorder potential and emerges when
compare the spectral statistics of classical waves of diffe
wavelengths in the limit of long wavelength. In our two
dimensional system we observe an increasing suppressio
disorder effects at low frequencies. This does not happen
electrons, and relates to the frequency dependence of
scattering cross section which is found for light but not f

FIG. 5. Level number varianceS2(L) and spectral rigidity
D3(L) for k051.5, 0.9, and 0.8, and 0.5 atl 51.4098. The GOE and
Poisson predictions are plotted as solid and dashed lines, res
tively.
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PRE 61 5923LOCALIZATION OF LIGHT IN DISORDERED . . .
electrons. The fact that the calculations were done in
dimensions may overemphasize the effect but the same
of phenomenon is expected to occur in three dimensions
somewhat reduced scale.

One-parameter scaling has been used to show that in
dimensions, electrons are localized for any disorder@22#. Do
our results imply that this statement does not hold for
d

i,

d

o
nd

a

o

e

wave equation? We cannot answer this question in full: O
simulation is necessarily limited to a finite two-dimension
area. We have shown that the boundary of the spectrum
k50 has a profound impact on the localization length. Ho
ever, we cannot exclude the possibility that the localizat
length becomes very large at the boundary without actu
diverging.
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